What do cells regulate in soft tissues on short time scales?

Cells within living soft biological tissues seem to promote the maintenance of a mechanical state within a defined range near a so-called set-point. This mechanobiological process is often referred to as mechanical homeostasis. During this process, cells intimately interact with the fibers of the surrounding extracellular matrix (ECM). It remains poorly understood, however, what individual cells actually regulate during these interactions, and how these micromechanical regulations are translated to tissue level to lead to what we macroscopically call mechanical homeostasis. Herein, we examine this question by a combination of experiments, theoretical analysis and computational modeling. We demonstrate that on short time scales (hours) - during which deposition and degradation of ECM fibers can largely be neglected - cells appear to regulate neither the stress / strain in the ECM nor their own shape, but rather only the contractile forces that they exert on the surrounding ECM.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here