What Do Self-Supervised Speech and Speaker Models Learn? New Findings From a Cross Model Layer-Wise Analysis

Self-supervised learning (SSL) has attracted increased attention for learning meaningful speech representations. Speech SSL models, such as WavLM, employ masked prediction training to encode general-purpose representations. In contrast, speaker SSL models, exemplified by DINO-based models, adopt utterance-level training objectives primarily for speaker representation. Understanding how these models represent information is essential for refining model efficiency and effectiveness. Unlike the various analyses of speech SSL, there has been limited investigation into what information speaker SSL captures and how its representation differs from speech SSL or other fully-supervised speaker models. This paper addresses these fundamental questions. We explore the capacity to capture various speech properties by applying SUPERB evaluation probing tasks to speech and speaker SSL models. We also examine which layers are predominantly utilized for each task to identify differences in how speech is represented. Furthermore, we conduct direct comparisons to measure the similarities between layers within and across models. Our analysis unveils that 1) the capacity to represent content information is somewhat unrelated to enhanced speaker representation, 2) specific layers of speech SSL models would be partly specialized in capturing linguistic information, and 3) speaker SSL models tend to disregard linguistic information but exhibit more sophisticated speaker representation.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here