What graph neural networks cannot learn: depth vs width

ICLR 2020  ·  Andreas Loukas ·

This paper studies the expressive power of graph neural networks falling within the message-passing framework (GNNmp). Two results are presented. First, GNNmp are shown to be Turing universal under sufficient conditions on their depth, width, node attributes, and layer expressiveness. Second, it is discovered that GNNmp can lose a significant portion of their power when their depth and width is restricted. The proposed impossibility statements stem from a new technique that enables the repurposing of seminal results from distributed computing and leads to lower bounds for an array of decision, optimization, and estimation problems involving graphs. Strikingly, several of these problems are deemed impossible unless the product of a GNNmp's depth and width exceeds a polynomial of the graph size; this dependence remains significant even for tasks that appear simple or when considering approximation.

PDF Abstract ICLR 2020 PDF ICLR 2020 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here