What Weights Work for You? Adapting Weights for Any Pareto Front Shape in Decomposition-based Evolutionary Multi-Objective Optimisation

8 Sep 2017  ·  Miqing Li, Xin Yao ·

The quality of solution sets generated by decomposition-based evolutionary multiobjective optimisation (EMO) algorithms depends heavily on the consistency between a given problem's Pareto front shape and the specified weights' distribution. A set of weights distributed uniformly in a simplex often lead to a set of well-distributed solutions on a Pareto front with a simplex-like shape, but may fail on other Pareto front shapes. It is an open problem on how to specify a set of appropriate weights without the information of the problem's Pareto front beforehand. In this paper, we propose an approach to adapt the weights during the evolutionary process (called AdaW). AdaW progressively seeks a suitable distribution of weights for the given problem by elaborating five parts in the weight adaptation --- weight generation, weight addition, weight deletion, archive maintenance, and weight update frequency. Experimental results have shown the effectiveness of the proposed approach. AdaW works well for Pareto fronts with very different shapes: 1) the simplex-like, 2) the inverted simplex-like, 3) the highly nonlinear, 4) the disconnect, 5) the degenerated, 6) the badly-scaled, and 7) the high-dimensional.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here