When is Char Better Than Subword: A Systematic Study of Segmentation Algorithms for Neural Machine Translation

Subword segmentation algorithms have been a \textit{de facto} choice when building neural machine translation systems. However, most of them need to learn a segmentation model based on some heuristics, which may produce sub-optimal segmentation. This can be problematic in some scenarios when the target language has rich morphological changes or there is not enough data for learning compact composition rules. Translating at fully character level has the potential to alleviate the issue, but empirical performances of character-based models has not been fully explored. In this paper, we present an in-depth comparison between character-based and subword-based NMT systems under three settings: translating to typologically diverse languages, training with low resource, and adapting to unseen domains. Experiment results show strong competitiveness of character-based models. Further analyses show that compared to subword-based models, character-based models are better at handling morphological phenomena, generating rare and unknown words, and more suitable for transferring to unseen domains.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here