Which Factorization Machine Modeling is Better: A Theoretical Answer with Optimal Guarantee

30 Jan 2019  ·  Ming Lin, Shuang Qiu, Jieping Ye, Xiaomin Song, Qi Qian, Liang Sun, Shenghuo Zhu, Rong Jin ·

Factorization machine (FM) is a popular machine learning model to capture the second order feature interactions. The optimal learning guarantee of FM and its generalized version is not yet developed. For a rank $k$ generalized FM of $d$ dimensional input, the previous best known sampling complexity is $\mathcal{O}[k^{3}d\cdot\mathrm{polylog}(kd)]$ under Gaussian distribution. This bound is sub-optimal comparing to the information theoretical lower bound $\mathcal{O}(kd)$. In this work, we aim to tighten this bound towards optimal and generalize the analysis to sub-gaussian distribution. We prove that when the input data satisfies the so-called $\tau$-Moment Invertible Property, the sampling complexity of generalized FM can be improved to $\mathcal{O}[k^{2}d\cdot\mathrm{polylog}(kd)/\tau^{2}]$. When the second order self-interaction terms are excluded in the generalized FM, the bound can be improved to the optimal $\mathcal{O}[kd\cdot\mathrm{polylog}(kd)]$ up to the logarithmic factors. Our analysis also suggests that the positive semi-definite constraint in the conventional FM is redundant as it does not improve the sampling complexity while making the model difficult to optimize. We evaluate our improved FM model in real-time high precision GPS signal calibration task to validate its superiority.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here