Which Model Should We Use for a Real-World Conversational Dialogue System? a Cross-Language Relevance Model or a Deep Neural Net?
We compare two models for corpus-based selection of dialogue responses: one based on cross-language relevance with a cross-language LSTM model. Each model is tested on multiple corpora, collected from two different types of dialogue source material. Results show that while the LSTM model performs adequately on a very large corpus (millions of utterances), its performance is dominated by the cross-language relevance model for a more moderate-sized corpus (ten thousands of utterances).
PDF AbstractTasks
Datasets
Add Datasets
introduced or used in this paper
Results from the Paper
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.