Why Convolutional Networks Learn Oriented Bandpass Filters: A Hypothesis

25 Sep 2019  ·  Richard P. Wildes ·

It has been repeatedly observed that convolutional architectures when applied to image understanding tasks learn oriented bandpass filters. A standard explanation of this result is that these filters reflect the structure of the images that they have been exposed to during training: Natural images typically are locally composed of oriented contours at various scales and oriented bandpass filters are matched to such structure. The present paper offers an alternative explanation based not on the structure of images, but rather on the structure of convolutional architectures. In particular, complex exponentials are the eigenfunctions of convolution. These eigenfunctions are defined globally; however, convolutional architectures operate locally. To enforce locality, one can apply a windowing function to the eigenfunctions, which leads to oriented bandpass filters as the natural operators to be learned with convolutional architectures. From a representational point of view, these filters allow for a local systematic way to characterize and operate on an image or other signal.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here