Width Provably Matters in Optimization for Deep Linear Neural Networks

24 Jan 2019  ·  Simon S. Du, Wei Hu ·

We prove that for an $L$-layer fully-connected linear neural network, if the width of every hidden layer is $\tilde\Omega (L \cdot r \cdot d_{\mathrm{out}} \cdot \kappa^3 )$, where $r$ and $\kappa$ are the rank and the condition number of the input data, and $d_{\mathrm{out}}$ is the output dimension, then gradient descent with Gaussian random initialization converges to a global minimum at a linear rate. The number of iterations to find an $\epsilon$-suboptimal solution is $O(\kappa \log(\frac{1}{\epsilon}))$. Our polynomial upper bound on the total running time for wide deep linear networks and the $\exp\left(\Omega\left(L\right)\right)$ lower bound for narrow deep linear neural networks [Shamir, 2018] together demonstrate that wide layers are necessary for optimizing deep models.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here