Wireless Power Control via Counterfactual Optimization of Graph Neural Networks

17 Feb 2020  ·  Navid Naderializadeh, Mark Eisen, Alejandro Ribeiro ·

We consider the problem of downlink power control in wireless networks, consisting of multiple transmitter-receiver pairs communicating with each other over a single shared wireless medium. To mitigate the interference among concurrent transmissions, we leverage the network topology to create a graph neural network architecture, and we then use an unsupervised primal-dual counterfactual optimization approach to learn optimal power allocation decisions. We show how the counterfactual optimization technique allows us to guarantee a minimum rate constraint, which adapts to the network size, hence achieving the right balance between average and $5^{th}$ percentile user rates throughout a range of network configurations.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods