Word Order Sensitive Embedding Features/Conditional Random Field-based Chinese Grammatical Error Detection

This paper discusses how to adapt two new word embedding features to build a more efficient Chinese Grammatical Error Diagnosis (CGED) systems to assist Chinese foreign learners (CFLs) in improving their written essays. The major idea is to apply word order sensitive Word2Vec approaches including (1) structured skip-gram and (2) continuous window (CWindow) models, because they are more suitable for solving syntax-based problems. The proposed new features were evaluated on the Test of Chinese as a Foreign Language (TOCFL) learner database provided by NLP-TEA-3{\&}CGED shared task. Experimental results showed that the new features did work better than the traditional word order insensitive Word2Vec approaches. Moreover, according to the official evaluation results, our system achieved the lowest (0.1362) false positive (FA) and the highest precision rates in all three measurements.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here