Word Order Sensitive Embedding Features/Conditional Random Field-based Chinese Grammatical Error Detection

WS 2016 Wei-Chieh ChouChin-Kui LinYuan-Fu LiaoYih-Ru Wang

This paper discusses how to adapt two new word embedding features to build a more efficient Chinese Grammatical Error Diagnosis (CGED) systems to assist Chinese foreign learners (CFLs) in improving their written essays. The major idea is to apply word order sensitive Word2Vec approaches including (1) structured skip-gram and (2) continuous window (CWindow) models, because they are more suitable for solving syntax-based problems... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet