Worst-Case Detection Performance for Distributed SIMO Physical Layer Authentication

14 May 2020  ·  Henrik Forssell, Ragnar Thobaben ·

Feature-based physical layer authentication (PLA) schemes, using position-specific channel characteristics as identifying features, can provide lightweight protection against impersonation attacks in overhead-limited applications like e.g., mission-critical and low-latency scenarios. However, with PLA-aware attack strategies, an attacker can maximize the probability of successfully impersonating the legitimate devices. In this paper, we provide worst-case detection performance bounds under such strategies for a distributed PLA scheme that is based on the channel-state information (CSI) observed at multiple distributed remote radio-heads. This distributed setup exploits the multiple-channel diversity for enhanced detection performance and mimics distributed antenna architectures considered for 4G and 5G radio access networks. We consider (i) a power manipulation attack, in which a single-antenna attacker adopts optimal transmit power and phase; and (ii) an optimal spatial position attack. Interestingly, our results show that the attacker can achieve close-to-optimal success probability with only statistical CSI, which significantly strengthens the relevance of our results for practical scenarios. Furthermore, our results show that, by distributing antennas to multiple radio-heads, the worst-case missed detection probability can be reduced by 4 orders of magnitude without increasing the total number of antennas, illustrating the superiority of distributed PLA over a co-located antenna setup.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here