Worst-Case Linear Discriminant Analysis as Scalable Semidefinite Feasibility Problems

27 Nov 2014  ·  Hui Li, Chunhua Shen, Anton Van Den Hengel, Qinfeng Shi ·

In this paper, we propose an efficient semidefinite programming (SDP) approach to worst-case linear discriminant analysis (WLDA). Compared with the traditional LDA, WLDA considers the dimensionality reduction problem from the worst-case viewpoint, which is in general more robust for classification. However, the original problem of WLDA is non-convex and difficult to optimize. In this paper, we reformulate the optimization problem of WLDA into a sequence of semidefinite feasibility problems. To efficiently solve the semidefinite feasibility problems, we design a new scalable optimization method with quasi-Newton methods and eigen-decomposition being the core components. The proposed method is orders of magnitude faster than standard interior-point based SDP solvers. Experiments on a variety of classification problems demonstrate that our approach achieves better performance than standard LDA. Our method is also much faster and more scalable than standard interior-point SDP solvers based WLDA. The computational complexity for an SDP with $m$ constraints and matrices of size $d$ by $d$ is roughly reduced from $\mathcal{O}(m^3+md^3+m^2d^2)$ to $\mathcal{O}(d^3)$ ($m>d$ in our case).

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.