Worst-Case Regret Bounds for Exploration via Randomized Value Functions

NeurIPS 2019  ·  Daniel Russo ·

This paper studies a recent proposal to use randomized value functions to drive exploration in reinforcement learning. These randomized value functions are generated by injecting random noise into the training data, making the approach compatible with many popular methods for estimating parameterized value functions. By providing a worst-case regret bound for tabular finite-horizon Markov decision processes, we show that planning with respect to these randomized value functions can induce provably efficient exploration.

PDF Abstract NeurIPS 2019 PDF NeurIPS 2019 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here