X-ray Computed Tomography Through Scatter

In current Xray CT scanners, tomographic reconstruction relies only on directly transmitted photons. The models used for reconstruction have regarded photons scattered by the body as noise or disturbance to be disposed of, either by acquisition hardware (an anti-scatter grid) or by the reconstruction software. This increases the radiation dose delivered to the patient. Treating these scattered photons as a source of information, we solve an inverse problem based on a 3D radiative transfer model that includes both elastic (Rayleigh) and inelastic (Compton) scattering. We further present ways to make the solution numerically efficient. The resulting tomographic reconstruction is more accurate than traditional CT, while enabling significant dose reduction and chemical decomposition. Demonstrations include both simulations based on a standard medical phantom and a real scattering tomography experiment.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here