XL$^2$Bench: A Benchmark for Extremely Long Context Understanding with Long-range Dependencies

8 Apr 2024  ·  Xuanfan Ni, Hengyi Cai, Xiaochi Wei, Shuaiqiang Wang, Dawei Yin, Piji Li ·

Large Language Models (LLMs) have demonstrated remarkable performance across diverse tasks but are constrained by their small context window sizes. Various efforts have been proposed to expand the context window to accommodate even up to 200K input tokens. Meanwhile, building high-quality benchmarks with much longer text lengths and more demanding tasks to provide comprehensive evaluations is of immense practical interest to facilitate long context understanding research of LLMs. However, prior benchmarks create datasets that ostensibly cater to long-text comprehension by expanding the input of traditional tasks, which falls short to exhibit the unique characteristics of long-text understanding, including long dependency tasks and longer text length compatible with modern LLMs' context window size. In this paper, we introduce a benchmark for extremely long context understanding with long-range dependencies, XL$^2$Bench, which includes three scenarios: Fiction Reading, Paper Reading, and Law Reading, and four tasks of increasing complexity: Memory Retrieval, Detailed Understanding, Overall Understanding, and Open-ended Generation, covering 27 subtasks in English and Chinese. It has an average length of 100K+ words (English) and 200K+ characters (Chinese). Evaluating six leading LLMs on XL$^2$Bench, we find that their performance significantly lags behind human levels. Moreover, the observed decline in performance across both the original and enhanced datasets underscores the efficacy of our approach to mitigating data contamination.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here