Zero-Shot Kernel Learning

CVPR 2018  ·  Hongguang Zhang, Piotr Koniusz ·

In this paper, we address an open problem of zero-shot learning. Its principle is based on learning a mapping that associates feature vectors extracted from i.e. images and attribute vectors that describe objects and/or scenes of interest... In turns, this allows classifying unseen object classes and/or scenes by matching feature vectors via mapping to a newly defined attribute vector describing a new class. Due to importance of such a learning task, there exist many methods that learn semantic, probabilistic, linear or piece-wise linear mappings. In contrast, we apply well-established kernel methods to learn a non-linear mapping between the feature and attribute spaces. We propose an easy learning objective inspired by the Linear Discriminant Analysis, Kernel-Target Alignment and Kernel Polarization methods that promotes incoherence. We evaluate performance of our algorithm on the Polynomial as well as shift-invariant Gaussian and Cauchy kernels. Despite simplicity of our approach, we obtain state-of-the-art results on several zero-shot learning datasets and benchmarks including a recent AWA2 dataset. read more

PDF Abstract CVPR 2018 PDF CVPR 2018 Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here