Complementary Attributes: A New Clue to Zero-Shot Learning

17 Apr 2018 Xiaofeng Xu Ivor W. Tsang Chuancai Liu

Zero-shot learning (ZSL) aims to recognize unseen objects using disjoint seen objects via sharing attributes. The generalization performance of ZSL is governed by the attributes, which transfer semantic information from seen classes to unseen classes... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet