Zero-Shot Machine Unlearning at Scale via Lipschitz Regularization

2 Feb 2024  ·  Jack Foster, Kyle Fogarty, Stefan Schoepf, Cengiz Öztireli, Alexandra Brintrup ·

To comply with AI and data regulations, the need to forget private or copyrighted information from trained machine learning models is increasingly important. The key challenge in unlearning is forgetting the necessary data in a timely manner, while preserving model performance. In this work, we address the zero-shot unlearning scenario, whereby an unlearning algorithm must be able to remove data given only a trained model and the data to be forgotten. Under such a definition, existing state-of-the-art methods are insufficient. Building on the concepts of Lipschitz continuity, we present a method that induces smoothing of the forget sample's output, with respect to perturbations of that sample. We show this smoothing successfully results in forgetting while preserving general model performance. We perform extensive empirical evaluation of our method over a range of contemporary benchmarks, verifying that our method achieves state-of-the-art performance under the strict constraints of zero-shot unlearning.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here