no code implementations • 1 Dec 2022 • Martin Hellkvist, Ayça Özçelikkale, Anders Ahlén
We present a non-asymptotic high-probability bound on the generalization error of the ridge regression problem under the model misspecification of having fake features.
no code implementations • 30 Nov 2022 • Martin Hellkvist, Ayça Özçelikkale, Anders Ahlén
We focus on the continual learning problem where the tasks arrive sequentially and the aim is to perform well on the newly arrived task without performance degradation on the previously seen tasks.
no code implementations • 11 Jul 2022 • Sribalaji C. Anand, André M. H. Teixeira, Anders Ahlén
The numerical example also illustrates that the security allocation using the Value-at-risk, and the impact on the nominal system may have different outcomes: thereby depicting the benefit of using risk metrics.
no code implementations • 7 Mar 2022 • Martin Hellkvist, Ayça Özçelikkale, Anders Ahlén
Our results show that fake features can significantly improve the estimation performance, even though they are not correlated with the features in the underlying system.
no code implementations • 22 Jan 2021 • Martin Hellkvist, Ayça Özçelikkale, Anders Ahlén
We provide high-probability bounds on the generalization error for both isotropic and correlated Gaussian data as well as sub-gaussian data.
no code implementations • 30 Apr 2020 • Martin Hellkvist, Ayça Özçelikkale, Anders Ahlén
We consider the setting where the unknowns are distributed over a network of nodes.