no code implementations • 19 Jun 2022 • Łukasz Struski, Marcin Mazur, Paweł Batorski, Przemysław Spurek, Jacek Tabor
Many crucial problems in deep learning and statistics are caused by a variational gap, i. e., a difference between evidence and evidence lower bound (ELBO).
no code implementations • 15 Nov 2021 • Marcin Mazur, Łukasz Pustelnik, Szymon Knop, Patryk Pagacz, Przemysław Spurek
We propose an effective regularization strategy (CW-TaLaR) for solving continual learning problems.
1 code implementation • 12 Oct 2021 • Magdalena Proszewska, Marcin Mazur, Tomasz Trzciński, Przemysław Spurek
Recently introduced implicit field representations offer an effective way of generating 3D object shapes.
1 code implementation • 11 Feb 2021 • Przemysław Spurek, Artur Kasymov, Marcin Mazur, Diana Janik, Sławomir Tadeja, Łukasz Struski, Jacek Tabor, Tomasz Trzciński
In this work, we reformulate the problem of point cloud completion into an object hallucination task.
1 code implementation • 15 Sep 2020 • Szymon Knop, Marcin Mazur, Przemysław Spurek, Jacek Tabor, Igor Podolak
First, an autoencoder based architecture, using kernel measures, is built to model a manifold of data.
no code implementations • 26 Aug 2020 • Chad Kelterborn, Marcin Mazur, Bogdan V. Petrenko
These methods modify the effect of the gradient in updating the values of the parameters.
no code implementations • 29 Jan 2019 • Szymon Knop, Marcin Mazur, Jacek Tabor, Igor Podolak, Przemysław Spurek
In this paper we discuss a class of AutoEncoder based generative models based on one dimensional sliced approach.
2 code implementations • ICLR 2019 • Szymon Knop, Jacek Tabor, Przemysław Spurek, Igor Podolak, Marcin Mazur, Stanisław Jastrzębski
The crucial new ingredient is the introduction of a new (Cramer-Wold) metric in the space of densities, which replaces the Wasserstein metric used in SWAE.