Data Augmentation

1722 papers with code • 1 benchmarks • 62 datasets

Data augmentation involves techniques used for increasing the amount of data, based on different modifications, to expand the amount of examples in the original dataset. Data augmentation not only helps to grow the dataset but it also increases the diversity of the dataset. When training machine learning models, data augmentation acts as a regularizer and helps to avoid overfitting.

Data augmentation techniques have been found useful in domains like NLP and computer vision. In computer vision, transformations like cropping, flipping, and rotation are used. In NLP, data augmentation techniques can include swapping, deletion, random insertion, among others.

Further readings:

( Image credit: Albumentations )

Libraries

Use these libraries to find Data Augmentation models and implementations

Most implemented papers

YOLOv4: Optimal Speed and Accuracy of Object Detection

AlexeyAB/darknet 23 Apr 2020

There are a huge number of features which are said to improve Convolutional Neural Network (CNN) accuracy.

Improved Baselines with Momentum Contrastive Learning

facebookresearch/moco 9 Mar 2020

Contrastive unsupervised learning has recently shown encouraging progress, e. g., in Momentum Contrast (MoCo) and SimCLR.

SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition

mozilla/DeepSpeech 18 Apr 2019

On LibriSpeech, we achieve 6. 8% WER on test-other without the use of a language model, and 5. 8% WER with shallow fusion with a language model.

AutoAugment: Learning Augmentation Policies from Data

tensorflow/models 24 May 2018

In our implementation, we have designed a search space where a policy consists of many sub-policies, one of which is randomly chosen for each image in each mini-batch.

Improved Regularization of Convolutional Neural Networks with Cutout

uoguelph-mlrg/Cutout 15 Aug 2017

Convolutional neural networks are capable of learning powerful representational spaces, which are necessary for tackling complex learning tasks.

3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation

wolny/pytorch-3dunet 21 Jun 2016

This paper introduces a network for volumetric segmentation that learns from sparsely annotated volumetric images.

Unsupervised Data Augmentation for Consistency Training

google-research/uda NeurIPS 2020

In this work, we present a new perspective on how to effectively noise unlabeled examples and argue that the quality of noising, specifically those produced by advanced data augmentation methods, plays a crucial role in semi-supervised learning.

Supervised Contrastive Learning

google-research/google-research NeurIPS 2020

Contrastive learning applied to self-supervised representation learning has seen a resurgence in recent years, leading to state of the art performance in the unsupervised training of deep image models.

EfficientNetV2: Smaller Models and Faster Training

google/automl 1 Apr 2021

By pretraining on the same ImageNet21k, our EfficientNetV2 achieves 87. 3% top-1 accuracy on ImageNet ILSVRC2012, outperforming the recent ViT by 2. 0% accuracy while training 5x-11x faster using the same computing resources.

Random Erasing Data Augmentation

zhunzhong07/Random-Erasing 16 Aug 2017

In this paper, we introduce Random Erasing, a new data augmentation method for training the convolutional neural network (CNN).