70 papers with code • 0 benchmarks • 1 datasets

Epidemiology is a scientific discipline that provides reliable knowledge for clinical medicine focusing on prevention, diagnosis and treatment of diseases. Research in Epidemiology aims at characterizing risk factors for the outbreak of diseases and at evaluating the efficiency of certain treatment strategies, e.g., to compare a new treatment with an established gold standard. This research is strongly hypothesis-driven and statistical analysis is the major tool for epidemiologists so far. Correlations between genetic factors, environmental factors, life style-related parameters, age and diseases are analyzed.

Source: Visual Analytics of Image-Centric Cohort Studies in Epidemiology


Most implemented papers

Did You Really Just Have a Heart Attack? Towards Robust Detection of Personal Health Mentions in Social Media

emory-irlab/PHM2017 26 Feb 2018

The first, critical, task for these applications is classifying whether a personal health event was mentioned, which we call the (PHM) problem.

Correspondence Analysis Using Neural Networks

HsiangHsu/2019-AISTATS-CA 21 Feb 2019

Correspondence analysis (CA) is a multivariate statistical tool used to visualize and interpret data dependencies.

Multi-task Learning for Aggregated Data using Gaussian Processes

frb-yousefi/aggregated-multitask-gp NeurIPS 2019

Our model represents each task as the linear combination of the realizations of latent processes that are integrated at a different scale per task.

BayesFlow: Learning complex stochastic models with invertible neural networks

stefanradev93/cINN 13 Mar 2020

In addition, our method incorporates a summary network trained to embed the observed data into maximally informative summary statistics.

Simulation-Based Inference for Global Health Decisions

mrc-ide/covid-sim 14 May 2020

The COVID-19 pandemic has highlighted the importance of in-silico epidemiological modelling in predicting the dynamics of infectious diseases to inform health policy and decision makers about suitable prevention and containment strategies.

EpidemiOptim: A Toolbox for the Optimization of Control Policies in Epidemiological Models

flowersteam/EpidemiOptim 9 Oct 2020

Epidemiologists model the dynamics of epidemics in order to propose control strategies based on pharmaceutical and non-pharmaceutical interventions (contact limitation, lock down, vaccination, etc).

Encoding physics to learn reaction-diffusion processes

isds-neu/percnn 9 Jun 2021

Modeling complex spatiotemporal dynamical systems, such as the reaction-diffusion processes, have largely relied on partial differential equations (PDEs).

Spatio-temporal Diffusion Point Processes

facebookresearch/neural_stpp 21 May 2023

To enhance the learning of each step, an elaborated spatio-temporal co-attention module is proposed to capture the interdependence between the event time and space adaptively.

Guided Deep List: Automating the Generation of Epidemiological Line Lists from Open Sources

sauravcsvt/KDD_linelisting 22 Feb 2017

Specifically, we focus on deriving epidemiological characteristics of an emerging disease and the affected population from reports of illness.