Explanation Generation

85 papers with code • 5 benchmarks • 9 datasets

This task has no description! Would you like to contribute one?

Libraries

Use these libraries to find Explanation Generation models and implementations
2 papers
163

Most implemented papers

Explainable Automated Fact-Checking for Public Health Claims

neemakot/Health-Fact-Checking EMNLP 2020

We present the first study of explainable fact-checking for claims which require specific expertise.

AR-BERT: Aspect-relation enhanced Aspect-level Sentiment Classification with Multi-modal Explanations

mainuliitkgp/ar-bert 26 Aug 2021

We propose AR-BERT, a novel two-level global-local entity embedding scheme that allows efficient joint training of KG-based aspect embeddings and ALSC models.

TE2Rules: Explaining Tree Ensembles using Rules

linkedin/TE2Rules 29 Jun 2022

Tree Ensemble (TE) models, such as Gradient Boosted Trees, often achieve optimal performance on tabular datasets, yet their lack of transparency poses challenges for comprehending their decision logic.

Explaining Patterns in Data with Language Models via Interpretable Autoprompting

csinva/imodelsX 4 Oct 2022

Large language models (LLMs) have displayed an impressive ability to harness natural language to perform complex tasks.

Explaining black box text modules in natural language with language models

csinva/imodelsX 17 May 2023

Here, we ask whether we can automatically obtain natural language explanations for black box text modules.

MACRec: a Multi-Agent Collaboration Framework for Recommendation

wzf2000/macrec 23 Feb 2024

LLM-based agents have gained considerable attention for their decision-making skills and ability to handle complex tasks.

Using Stratified Sampling to Improve LIME Image Explanations

rashidrao-pk/lime_stratified 26 Mar 2024

We investigate the use of a stratified sampling approach for LIME Image, a popular model-agnostic explainable AI method for computer vision tasks, in order to reduce the artifacts generated by typical Monte Carlo sampling.

Red Dragon AI at TextGraphs 2019 Shared Task: Language Model Assisted Explanation Generation

mdda/worldtree_corpus WS 2019

The TextGraphs-13 Shared Task on Explanation Regeneration asked participants to develop methods to reconstruct gold explanations for elementary science questions.

QED: A Framework and Dataset for Explanations in Question Answering

google-research-datasets/QED 8 Sep 2020

A question answering system that in addition to providing an answer provides an explanation of the reasoning that leads to that answer has potential advantages in terms of debuggability, extensibility and trust.