Browse > Medical > Medical Image Segmentation > Lesion Segmentation

Lesion Segmentation

20 papers with code · Medical

Lesion segmentation is the task of segmenting out lesions from other objects in medical based images.

State-of-the-art leaderboards

Greatest papers with code

Automatic Liver and Tumor Segmentation of CT and MRI Volumes using Cascaded Fully Convolutional Neural Networks

20 Feb 2017IBBM/Cascaded-FCN

Automatic segmentation of the liver and hepatic lesions is an important step towards deriving quantitative biomarkers for accurate clinical diagnosis and computer-aided decision support systems. In the first step, we train a FCN to segment the liver as ROI input for a second FCN.

AUTOMATIC LIVER AND TUMOR SEGMENTATION LESION SEGMENTATION

Automatic Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural Networks and 3D Conditional Random Fields

7 Oct 2016IBBM/Cascaded-FCN

Automatic segmentation of the liver and its lesion is an important step towards deriving quantitative biomarkers for accurate clinical diagnosis and computer-aided decision support systems. In the first step, we train a FCN to segment the liver as ROI input for a second FCN.

LESION SEGMENTATION

Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation

20 Feb 2018LeeJunHyun/Image_Segmentation

More specifically, these techniques have been successfully applied to medical image classification, segmentation, and detection tasks. In this paper, we propose a Recurrent Convolutional Neural Network (RCNN) based on U-Net as well as a Recurrent Residual Convolutional Neural Network (RRCNN) based on U-Net models, which are named RU-Net and R2U-Net respectively.

IMAGE CLASSIFICATION LESION SEGMENTATION LUNG NODULE SEGMENTATION RETINAL VESSEL SEGMENTATION SEMANTIC SEGMENTATION SKIN CANCER SEGMENTATION

Efficient Multi-Scale 3D CNN with Fully Connected CRF for Accurate Brain Lesion Segmentation

18 Mar 2016yaq007/Autofocus-Layer

We propose a dual pathway, 11-layers deep, three-dimensional Convolutional Neural Network for the challenging task of brain lesion segmentation. Our pipeline is extensively evaluated on three challenging tasks of lesion segmentation in multi-channel MRI patient data with traumatic brain injuries, brain tumors, and ischemic stroke.

BRAIN TUMOR SEGMENTATION LESION SEGMENTATION

Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks

16 May 2018neuropoly/spinalcordtoolbox

The goal of this study was to develop a fully-automatic framework, robust to variability in both image parameters and clinical condition, for segmentation of the spinal cord and intramedullary MS lesions from conventional MRI data. The proposed cord and lesion automatic segmentation approach is based on a sequence of two Convolutional Neural Networks (CNNs).

LESION SEGMENTATION

RECOD Titans at ISIC Challenge 2017

14 Mar 2017learningtitans/isbi2017-part3

This extended abstract describes the participation of RECOD Titans in parts 1 and 3 of the ISIC Challenge 2017 "Skin Lesion Analysis Towards Melanoma Detection" (ISBI 2017). Although our team has a long experience with melanoma classification, the ISIC Challenge 2017 was the very first time we worked on skin-lesion segmentation.

LESION SEGMENTATION META-LEARNING

Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach

16 Feb 2017sergivalverde/cnn-ms-lesion-segmentation

We evaluate the accuracy of the proposed method on the public MS lesion segmentation challenge MICCAI2008 dataset, comparing it with respect to other state-of-the-art MS lesion segmentation tools. On clinical MS data, our approach exhibits a significant increase in the accuracy segmenting of WM lesions when compared with the rest of evaluated methods, highly correlating ($r \ge 0.97$) also with the expected lesion volume.

LESION SEGMENTATION

Incorporating the Knowledge of Dermatologists to Convolutional Neural Networks for the Diagnosis of Skin Lesions

6 Mar 2017igondia/matconvnet-dermoscopy

This report describes our submission to the ISIC 2017 Challenge in Skin Lesion Analysis Towards Melanoma Detection. We have participated in the Part 3: Lesion Classification with a system for automatic diagnosis of nevus, melanoma and seborrheic keratosis.

LESION SEGMENTATION

SurvivalNet: Predicting patient survival from diffusion weighted magnetic resonance images using cascaded fully convolutional and 3D convolutional neural networks

20 Feb 2017FelixGruen/tensorflow-u-net

Automatic non-invasive assessment of hepatocellular carcinoma (HCC) malignancy has the potential to substantially enhance tumor treatment strategies for HCC patients. A 3D neural network (SurvivalNet) then predicts the HCC lesions' malignancy from the HCC tumor segmentation.

LESION SEGMENTATION

Exploring Uncertainty Measures in Deep Networks for Multiple Sclerosis Lesion Detection and Segmentation

3 Aug 2018tanyanair/segmentation_uncertainty

We present the first exploration of multiple uncertainty estimates based on Monte Carlo (MC) dropout [4] in the context of deep networks for lesion detection and segmentation in medical images. We analyze the performance of voxel-based segmentation and lesion-level detection by choosing operating points based on the uncertainty.

LESION SEGMENTATION