BreastDICOM4 ([MIMBCD-UI] UTA4: Medical Imaging DICOM Files Dataset)

Introduced by Calisto et al. in BreastScreening: On the Use of Multi-Modality in Medical Imaging Diagnosis

Several datasets are fostering innovation in higher-level functions for everyone, everywhere. By providing this repository, we hope to encourage the research community to focus on hard problems. In this repository, we present our medical imaging DICOM files of patients from our User Tests and Analysis 4 (UTA4) study. Here, we provide a dataset of the used medical images during the UTA4 tasks. This repository and respective dataset should be paired with the dataset-uta4-rates repository dataset. Work and results are published on a top Human-Computer Interaction (HCI) conference named AVI 2020 (page). Results were analyzed and interpreted on our Statistical Analysis charts. The user tests were made in clinical institutions, where clinicians diagnose several patients for a Single-Modality vs Multi-Modality comparison. For example, in these tests, we used both prototype-single-modality and prototype-multi-modality repositories for the comparison. On the same hand, the hereby dataset represents the pieces of information of both BreastScreening and MIDA projects. These projects are research projects that deal with the use of a recently proposed technique in literature: Deep Convolutional Neural Networks (CNNs). From a developed User Interface (UI) and framework, these deep networks will incorporate several datasets in different modes. For more information about the available datasets please follow the Datasets page on the Wiki of the meta information repository. Last but not least, you can find further information on the Wiki in this repository. We also have several demos to see in our YouTube Channel, please follow us.


Paper Code Results Date Stars

Dataset Loaders

No data loaders found. You can submit your data loader here.


Similar Datasets