The ICDAR 2013 dataset consists of 229 training images and 233 testing images, with word-level annotations provided. It is the standard benchmark dataset for evaluating near-horizontal text detection.
253 PAPERS • 3 BENCHMARKS
The COCO-Text dataset is a dataset for text detection and recognition. It is based on the MS COCO dataset, which contains images of complex everyday scenes. The COCO-Text dataset contains non-text images, legible text images and illegible text images. In total there are 22184 training images and 7026 validation images with at least one instance of legible text.
96 PAPERS • 1 BENCHMARK
The MSRA-TD500 dataset is a text detection dataset that contains 300 training images and 200 test images. Text regions are arbitrarily orientated and annotated at sentence level. Different from the other datasets, it contains both English and Chinese text.
80 PAPERS • 1 BENCHMARK
Total-Text is a text detection dataset that consists of 1,555 images with a variety of text types including horizontal, multi-oriented, and curved text instances. The training split and testing split have 1,255 images and 300 images, respectively.
72 PAPERS • 1 BENCHMARK
Chinese Text in the Wild is a dataset of Chinese text with about 1 million Chinese characters from 3850 unique ones annotated by experts in over 30000 street view images. This is a challenging dataset with good diversity containing planar text, raised text, text under poor illumination, distant text, partially occluded text, etc.
39 PAPERS • NO BENCHMARKS YET
Features a large-scale dataset with 12,263 annotated images. Two tasks, namely text localization and end-to-end recognition, are set up. The competition took place from January 20 to May 31, 2017. 23 valid submissions were received from 19 teams.
33 PAPERS • NO BENCHMARKS YET
ICDAR2017 is a dataset for scene text detection.
26 PAPERS • 1 BENCHMARK
The SCUT-CTW1500 dataset contains 1,500 images: 1,000 for training and 500 for testing. In particular, it provides 10,751 cropped text instance images, including 3,530 with curved text. The images are manually harvested from the Internet, image libraries such as Google Open-Image, or phone cameras. The dataset contains a lot of horizontal and multi-oriented text.
25 PAPERS • 2 BENCHMARKS
A newly developed natural scene text dataset of Chinese shop signs in street views.
1 PAPER • NO BENCHMARKS YET