Two-layer Residual Sparsifying Transform Learning for Image Reconstruction

1 Jun 2019  ·  Xuehang Zheng, Saiprasad Ravishankar, Yong Long, Marc Louis Klasky, Brendt Wohlberg ·

Signal models based on sparsity, low-rank and other properties have been exploited for image reconstruction from limited and corrupted data in medical imaging and other computational imaging applications. In particular, sparsifying transform models have shown promise in various applications, and offer numerous advantages such as efficiencies in sparse coding and learning. This work investigates pre-learning a two-layer extension of the transform model for image reconstruction, wherein the transform domain or filtering residuals of the image are further sparsified in the second layer. The proposed block coordinate descent optimization algorithms involve highly efficient updates. Preliminary numerical experiments demonstrate the usefulness of a two-layer model over the previous related schemes for CT image reconstruction from low-dose measurements.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here