Metric Learning for Individual Fairness

1 Jun 2019  ·  Christina Ilvento ·

There has been much discussion recently about how fairness should be measured or enforced in classification. Individual Fairness [Dwork, Hardt, Pitassi, Reingold, Zemel, 2012], which requires that similar individuals be treated similarly, is a highly appealing definition as it gives strong guarantees on treatment of individuals. Unfortunately, the need for a task-specific similarity metric has prevented its use in practice. In this work, we propose a solution to the problem of approximating a metric for Individual Fairness based on human judgments. Our model assumes that we have access to a human fairness arbiter, who can answer a limited set of queries concerning similarity of individuals for a particular task, is free of explicit biases and possesses sufficient domain knowledge to evaluate similarity. Our contributions include definitions for metric approximation relevant for Individual Fairness, constructions for approximations from a limited number of realistic queries to the arbiter on a sample of individuals, and learning procedures to construct hypotheses for metric approximations which generalize to unseen samples under certain assumptions of learnability of distance threshold functions.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here