An Approach for Process Model Extraction By Multi-Grained Text Classification

16 May 2019  ·  Chen Qian, Lijie Wen, Akhil Kumar, Leilei Lin, Li Lin, Zan Zong, Shuang Li, Jian-Min Wang ·

Process model extraction (PME) is a recently emerged interdiscipline between natural language processing (NLP) and business process management (BPM), which aims to extract process models from textual descriptions. Previous process extractors heavily depend on manual features and ignore the potential relations between clues of different text granularities. In this paper, we formalize the PME task into the multi-grained text classification problem, and propose a hierarchical neural network to effectively model and extract multi-grained information without manually-defined procedural features. Under this structure, we accordingly propose the coarse-to-fine (grained) learning mechanism, training multi-grained tasks in coarse-to-fine grained order to share the high-level knowledge for the low-level tasks. To evaluate our approach, we construct two multi-grained datasets from two different domains and conduct extensive experiments from different dimensions. The experimental results demonstrate that our approach outperforms the state-of-the-art methods with statistical significance and further investigations demonstrate its effectiveness.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here