Validation of image-guided cochlear implant programming techniques

23 Sep 2019  ·  Yiyuan Zhao, Jianing Wang, Rui Li, Robert F. Labadie, Benoit M. Dawant, Jack H. Noble ·

Cochlear implants (CIs) are a standard treatment for patients who experience severe to profound hearing loss. Recent studies have shown that hearing outcome is correlated with intra-cochlear anatomy and electrode placement. Our group has developed image-guided CI programming (IGCIP) techniques that use image analysis methods to both segment the inner ear structures in pre- or post-implantation CT images and localize the CI electrodes in post-implantation CT images. This permits to assist audiologists with CI programming by suggesting which among the contacts should be deactivated to reduce electrode interaction that is known to affect outcomes. Clinical studies have shown that IGCIP can improve hearing outcomes for CI recipients. However, the sensitivity of IGCIP with respect to the accuracy of the two major steps: electrode localization and intra-cochlear anatomy segmentation, is unknown. In this article, we create a ground truth dataset with conventional CT and micro-CT images of 35 temporal bone specimens to both rigorously characterize the accuracy of these two steps and assess how inaccuracies in these steps affect the overall results. Our study results show that when clinical pre- and post-implantation CTs are available, IGCIP produces results that are comparable to those obtained with the corresponding ground truth in 86.7% of the subjects tested. When only post-implantation CTs are available, this number is 83.3%. These results suggest that our current method is robust to errors in segmentation and localization but also that it can be improved upon. Keywords: cochlear implant, ground truth, segmentation, validation

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here