2-16 GHz Multifrequency X-Cut Lithium Niobate NEMS Resonators on a Single Chip

9 May 2024  ·  Ryan Tetro, Luca Colombo, Matteo Rinaldi ·

This work presents the design, fabrication, and testing of X-Cut Lithium Niobate (LN) acoustic nanoelectromechanical (NEMS) Laterally Vibrating Resonators (LVRs) and Degenerate LVRs (d-LVRs) operating in the S0 (YZ30) and SH0 (YZ-10) modes between 2 to 16 GHz range, monolithically fabricated on a single chip. The NEMS topology is optimized to extend the aforementioned fundamental modes in the C-, X-, and Ku-bands while preserving performance and mass manufacturability. The devices present acoustic wavelengths ({\lambda}) varying between 1800 and 400 nm and are fabricated on a 100 nm ultra-thin LN film on high resistivity silicon with a 3-mask process. Experimental results highlighted quality factor at resonance (Qs) and mechanical quality factors (Qm) as high as 477 and 1750, respectively, and electromechanical coupling (kt2) as high as 32.7%. Large kt2 (>10%) are recorded over a broad range of frequencies (2 - 8 GHz), while Qm exceeding 100 are measured up to 15 GHz. Further enhancement to performance and range of operation on the same chip can be achieved by decreasing {\lambda}, refining the fabrication process, and optimizing device topology. These additional steps can help pave the way for manufacturing high-performance resonators on a single chip covering the entire 1 - 25 GHz spectrum.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here