3D/2D regularized CNN feature hierarchy for Hyperspectral image classification

25 Apr 2021  ·  Muhammad Ahmad, Manuel Mazzara, Salvatore Distefano ·

Convolutional Neural Networks (CNN) have been rigorously studied for Hyperspectral Image Classification (HSIC) and are known to be effective in exploiting joint spatial-spectral information with the expense of lower generalization performance and learning speed due to the hard labels and non-uniform distribution over labels. Several regularization techniques have been used to overcome the aforesaid issues. However, sometimes models learn to predict the samples extremely confidently which is not good from a generalization point of view. Therefore, this paper proposed an idea to enhance the generalization performance of a hybrid CNN for HSIC using soft labels that are a weighted average of the hard labels and uniform distribution over ground labels. The proposed method helps to prevent CNN from becoming over-confident. We empirically show that in improving generalization performance, label smoothing also improves model calibration which significantly improves beam-search. Several publicly available Hyperspectral datasets are used to validate the experimental evaluation which reveals improved generalization performance, statistical significance, and computational complexity as compared to the state-of-the-art models. The code will be made available at https://github.com/mahmad00.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods