Label Smoothing is a regularization technique that introduces noise for the labels. This accounts for the fact that datasets may have mistakes in them, so maximizing the likelihood of $\log{p}\left(y\mid{x}\right)$ directly can be harmful. Assume for a small constant $\epsilon$, the training set label $y$ is correct with probability $1-\epsilon$ and incorrect otherwise. Label Smoothing regularizes a model based on a softmax with $k$ output values by replacing the hard $0$ and $1$ classification targets with targets of $\frac{\epsilon}{k-1}$ and $1-\epsilon$ respectively.
Source: Deep Learning, Goodfellow et al
Image Source: When Does Label Smoothing Help?
Paper | Code | Results | Date | Stars |
---|
Task | Papers | Share |
---|---|---|
Object Detection | 45 | 5.87% |
Image Classification | 41 | 5.35% |
Semantic Segmentation | 37 | 4.83% |
Language Modelling | 25 | 3.26% |
Machine Translation | 19 | 2.48% |
Time Series | 15 | 1.96% |
Self-Supervised Learning | 14 | 1.83% |
Pose Estimation | 11 | 1.44% |
Automatic Speech Recognition | 10 | 1.31% |
Component | Type |
|
---|---|---|
🤖 No Components Found | You can add them if they exist; e.g. Mask R-CNN uses RoIAlign |