A Boolean Task Algebra for Reinforcement Learning

The ability to compose learned skills to solve new tasks is an important property of lifelong-learning agents. In this work, we formalise the logical composition of tasks as a Boolean algebra. This allows us to formulate new tasks in terms of the negation, disjunction and conjunction of a set of base tasks. We then show that by learning goal-oriented value functions and restricting the transition dynamics of the tasks, an agent can solve these new tasks with no further learning. We prove that by composing these value functions in specific ways, we immediately recover the optimal policies for all tasks expressible under the Boolean algebra. We verify our approach in two domains---including a high-dimensional video game environment requiring function approximation---where an agent first learns a set of base skills, and then composes them to solve a super-exponential number of new tasks.

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here