A Closer Look at Temporal Sentence Grounding in Videos: Dataset and Metric

22 Jan 2021  ·  Yitian Yuan, Xiaohan Lan, Xin Wang, Long Chen, Zhi Wang, Wenwu Zhu ·

Temporal Sentence Grounding in Videos (TSGV), i.e., grounding a natural language sentence which indicates complex human activities in a long and untrimmed video sequence, has received unprecedented attentions over the last few years. Although each newly proposed method plausibly can achieve better performance than previous ones, current TSGV models still tend to capture the moment annotation biases and fail to take full advantage of multi-modal inputs. Even more incredibly, several extremely simple baselines without training can also achieve state-of-the-art performance. In this paper, we take a closer look at the existing evaluation protocols for TSGV, and find that both the prevailing dataset splits and evaluation metrics are the devils to cause unreliable benchmarking. To this end, we propose to re-organize two widely-used TSGV benchmarks (ActivityNet Captions and Charades-STA). Specifically, we deliberately make the ground-truth moment distribution different in the training and test splits, i.e., out-of-distribution (OOD) testing. Meanwhile, we introduce a new evaluation metric dR@n,IoU@m to calibrate the basic IoU scores by penalizing on the bias-influenced moment predictions and alleviate the inflating evaluations caused by the dataset annotation biases such as overlong ground-truth moments. Under our new evaluation protocol, we conduct extensive experiments and ablation studies on eight state-of-the-art TSGV methods. All the results demonstrate that the re-organized dataset splits and new metric can better monitor the progress in TSGV. Our reorganized datsets are available at https://github.com/yytzsy/grounding_changing_distribution.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here