A CMOS Spiking Neuron for Brain-Inspired Neural Networks with Resistive Synapses and In-Situ Learning

28 May 2015  ·  Xinyu Wu, Vishal Saxena, Kehan Zhu, Sakkarapani Balagopal ·

Nanoscale resistive memories are expected to fuel dense integration of electronic synapses for large-scale neuromorphic system. To realize such a brain-inspired computing chip, a compact CMOS spiking neuron that performs in-situ learning and computing while driving a large number of resistive synapses is desired. This work presents a novel leaky integrate-and-fire neuron design which implements the dual-mode operation of current integration and synaptic drive, with a single opamp and enables in-situ learning with crossbar resistive synapses. The proposed design was implemented in a 0.18 $\mu$m CMOS technology. Measurements show neuron's ability to drive a thousand resistive synapses, and demonstrate an in-situ associative learning. The neuron circuit occupies a small area of 0.01 mm$^2$ and has an energy-efficiency of 9.3 pJ$/$spike$/$synapse.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here