A Constraint-Based Algorithm For Causal Discovery with Cycles, Latent Variables and Selection Bias

5 May 2018  ·  Eric V. Strobl ·

Causal processes in nature may contain cycles, and real datasets may violate causal sufficiency as well as contain selection bias. No constraint-based causal discovery algorithm can currently handle cycles, latent variables and selection bias (CLS) simultaneously... I therefore introduce an algorithm called Cyclic Causal Inference (CCI) that makes sound inferences with a conditional independence oracle under CLS, provided that we can represent the cyclic causal process as a non-recursive linear structural equation model with independent errors. Empirical results show that CCI outperforms CCD in the cyclic case as well as rivals FCI and RFCI in the acyclic case. read more

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.