A Coordinated MDP Approach to Multi-Agent Planning for Resource Allocation, with Applications to Healthcare

7 Jul 2014  ·  Hadi Hosseini, Jesse Hoey, Robin Cohen ·

This paper considers a novel approach to scalable multiagent resource allocation in dynamic settings. We propose an approximate solution in which each resource consumer is represented by an independent MDP-based agent that models expected utility using an average model of its expected access to resources given only limited information about all other agents. A global auction-based mechanism is proposed for allocations based on expected regret. We assume truthful bidding and a cooperative coordination mechanism, as we are considering healthcare scenarios. We illustrate the performance of our coordinated MDP approach against a Monte-Carlo based planning algorithm intended for large-scale applications, as well as other approaches suitable for allocating medical resources. The evaluations show that the global utility value across all consumer agents is closer to optimal when using our algorithms under certain time constraints, with low computational cost. As such, we offer a promising approach for addressing complex resource allocation problems that arise in healthcare settings.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here