A Double Residual Compression Algorithm for Efficient Distributed Learning

16 Oct 2019  ·  Xiaorui Liu, Yao Li, Jiliang Tang, Ming Yan ·

Large-scale machine learning models are often trained by parallel stochastic gradient descent algorithms. However, the communication cost of gradient aggregation and model synchronization between the master and worker nodes becomes the major obstacle for efficient learning as the number of workers and the dimension of the model increase. In this paper, we propose DORE, a DOuble REsidual compression stochastic gradient descent algorithm, to reduce over $95\%$ of the overall communication such that the obstacle can be immensely mitigated. Our theoretical analyses demonstrate that the proposed strategy has superior convergence properties for both strongly convex and nonconvex objective functions. The experimental results validate that DORE achieves the best communication efficiency while maintaining similar model accuracy and convergence speed in comparison with start-of-the-art baselines.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods