A Formal Language Approach to Explaining RNNs

12 Jun 2020Bishwamittra GhoshDaniel Neider

This paper presents LEXR, a framework for explaining the decision making of recurrent neural networks (RNNs) using a formal description language called Linear Temporal Logic (LTL). LTL is the de facto standard for the specification of temporal properties in the context of formal verification and features many desirable properties that make the generated explanations easy for humans to interpret: it is a descriptive language, it has a variable-free syntax, and it can easily be translated into plain English... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet