A Frequency Domain Constraint for Synthetic and Real X-ray Image Super Resolution

14 May 2021  ·  Qing Ma, Jae Chul Koh, WonSook Lee ·

Synthetic X-ray images are simulated X-ray images projected from CT data. High-quality synthetic X-ray images can facilitate various applications such as surgical image guidance systems and VR training simulations. However, it is difficult to produce high-quality arbitrary view synthetic X-ray images in real-time due to different CT slice thickness, high computational cost, and the complexity of algorithms. Our goal is to generate high-resolution synthetic X-ray images in real-time by upsampling low-resolution images with deep learning-based super-resolution methods. Reference-based Super Resolution (RefSR) has been well studied in recent years and has shown higher performance than traditional Single Image Super-Resolution (SISR). It can produce fine details by utilizing the reference image but still inevitably generates some artifacts and noise. In this paper, we introduce frequency domain loss as a constraint to further improve the quality of the RefSR results with fine details and without obvious artifacts. To the best of our knowledge, this is the first paper utilizing the frequency domain for the loss functions in the field of super-resolution. We achieved good results in evaluating our method on both synthetic and real X-ray image datasets.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here