A Gaussian Process Based Method with Deep Kernel Learning for Pricing High-dimensional American Options

13 Nov 2023  ·  Jirong Zhuang, Deng Ding, Weiguo Lu, Xuan Wu, Gangnan Yuan ·

In this work, we present a novel machine learning approach for pricing high-dimensional American options based on the modified Gaussian process regression (GPR). We incorporate deep kernel learning and sparse variational Gaussian processes to address the challenges traditionally associated with GPR. These challenges include its diminished reliability in high-dimensional scenarios and the excessive computational costs associated with processing extensive numbers of simulated paths Our findings indicate that the proposed method surpasses the performance of the least squares Monte Carlo method in high-dimensional scenarios, particularly when the underlying assets are modeled by Merton's jump diffusion model. Moreover, our approach does not exhibit a significant increase in computational time as the number of dimensions grows. Consequently, this method emerges as a potential tool for alleviating the challenges posed by the curse of dimensionality.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods