A General Taylor Framework for Unifying and Revisiting Attribution Methods

28 May 2021  ·  Huiqi Deng, Na Zou, Mengnan Du, Weifu Chen, Guocan Feng, Xia Hu ·

Attribution methods provide an insight into the decision-making process of machine learning models, especially deep neural networks, by assigning contribution scores to each individual feature. However, the attribution problem has not been well-defined, which lacks a unified guideline to the contribution assignment process. Furthermore, existing attribution methods often built upon various empirical intuitions and heuristics. There still lacks a general theoretical framework that not only can offer a good description of the attribution problem, but also can be applied to unifying and revisiting existing attribution methods. To bridge the gap, in this paper, we propose a Taylor attribution framework, which models the attribution problem as how to decide individual payoffs in a coalition. Then, we reformulate fourteen mainstream attribution methods into the Taylor framework and analyze these attribution methods in terms of rationale, fidelity, and limitation in the framework. Moreover, we establish three principles for a good attribution in the Taylor attribution framework, i.e., low approximation error, correct Taylor contribution assignment, and unbiased baseline selection. Finally, we empirically validate the Taylor reformulations and reveal a positive correlation between the attribution performance and the number of principles followed by the attribution method via benchmarking on real-world datasets.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here