A Generalization of Continuous Relaxation in Structured Pruning

28 Aug 2023  ·  Brad Larson, Bishal Upadhyaya, Luke McDermott, Siddha Ganju ·

Deep learning harnesses massive parallel floating-point processing to train and evaluate large neural networks. Trends indicate that deeper and larger neural networks with an increasing number of parameters achieve higher accuracy than smaller neural networks. This performance improvement, which often requires heavy compute for both training and evaluation, eventually needs to translate well to resource-constrained hardware for practical value. Structured pruning asserts that while large networks enable us to find solutions to complex computer vision problems, a smaller, computationally efficient sub-network can be derived from the large neural network that retains model accuracy but significantly improves computational efficiency. We generalize structured pruning with algorithms for network augmentation, pruning, sub-network collapse and removal. In addition, we demonstrate efficient and stable convergence up to 93% sparsity and 95% FLOPs reduction without loss of inference accuracy using with continuous relaxation matching or exceeding the state of the art for all structured pruning methods. The resulting CNN executes efficiently on GPU hardware without computationally expensive sparse matrix operations. We achieve this with routine automatable operations on classification and segmentation problems using CIFAR-10, ImageNet, and CityScapes datasets with the ResNet and U-NET network architectures.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods