A convolution is a type of matrix operation, consisting of a kernel, a small matrix of weights, that slides over input data performing element-wise multiplication with the part of the input it is on, then summing the results into an output.
Intuitively, a convolution allows for weight sharing - reducing the number of effective parameters - and image translation (allowing for the same feature to be detected in different parts of the input space).
Image Source: https://arxiv.org/pdf/1603.07285.pdf
Paper | Code | Results | Date | Stars |
---|
Task | Papers | Share |
---|---|---|
Semantic Segmentation | 53 | 7.45% |
Object Detection | 45 | 6.33% |
Image Segmentation | 29 | 4.08% |
Image Classification | 23 | 3.23% |
Medical Image Segmentation | 20 | 2.81% |
Denoising | 18 | 2.53% |
Classification | 16 | 2.25% |
Image Generation | 15 | 2.11% |
Super-Resolution | 13 | 1.83% |
Component | Type |
|
---|---|---|
🤖 No Components Found | You can add them if they exist; e.g. Mask R-CNN uses RoIAlign |