A gray-box model for a probabilistic estimate of regional ground magnetic perturbations: Enhancing the NOAA operational Geospace model with machine learning

2 Dec 2019  ·  Enrico Camporeale, M. D. Cash, H. J. Singer, C. C. Balch, Z. Huang, G. Toth ·

We present a novel algorithm that predicts the probability that the time derivative of the horizontal component of the ground magnetic field $dB/dt$ exceeds a specified threshold at a given location. This quantity provides important information that is physically relevant to Geomagnetically Induced Currents (GIC), which are electric currents { associated to} sudden changes in the Earth's magnetic field due to Space Weather events. The model follows a 'gray-box' approach by combining the output of a physics-based model with machine learning. Specifically, we combine the University of Michigan's Geospace model that is operational at the NOAA Space Weather Prediction Center, with a boosted ensemble of classification trees. We discuss the problem of re-calibrating the output of the decision tree to obtain reliable probabilities. The performance of the model is assessed by typical metrics for probabilistic forecasts: Probability of Detection and False Detection, True Skill Statistic, Heidke Skill Score, and Receiver Operating Characteristic curve. We show that the ML enhanced algorithm consistently improves all the metrics considered.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here