A Hybrid Approach for Learning to Shift and Grasp with Elaborate Motion Primitives

2 Nov 2021  ·  Zohar Feldman, Hanna Ziesche, Ngo Anh Vien, Dotan Di Castro ·

Many possible fields of application of robots in real world settings hinge on the ability of robots to grasp objects. As a result, robot grasping has been an active field of research for many years. With our publication we contribute to the endeavor of enabling robots to grasp, with a particular focus on bin picking applications. Bin picking is especially challenging due to the often cluttered and unstructured arrangement of objects and the often limited graspability of objects by simple top down grasps. To tackle these challenges, we propose a fully self-supervised reinforcement learning approach based on a hybrid discrete-continuous adaptation of soft actor-critic (SAC). We employ parametrized motion primitives for pushing and grasping movements in order to enable a flexibly adaptable behavior to the difficult setups we consider. Furthermore, we use data augmentation to increase sample efficiency. We demonnstrate our proposed method on challenging picking scenarios in which planar grasp learning or action discretization methods would face a lot of difficulties

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here