A Lyapunov Theory for Finite-Sample Guarantees of Asynchronous Q-Learning and TD-Learning Variants

2 Feb 2021  ·  Zaiwei Chen, Siva Theja Maguluri, Sanjay Shakkottai, Karthikeyan Shanmugam ·

This paper develops an unified framework to study finite-sample convergence guarantees of a large class of value-based asynchronous reinforcement learning (RL) algorithms. We do this by first reformulating the RL algorithms as \textit{Markovian Stochastic Approximation} (SA) algorithms to solve fixed-point equations. We then develop a Lyapunov analysis and derive mean-square error bounds on the convergence of the Markovian SA. Based on this result, we establish finite-sample mean-square convergence bounds for asynchronous RL algorithms such as $Q$-learning, $n$-step TD, TD$(\lambda)$, and off-policy TD algorithms including V-trace. As a by-product, by analyzing the convergence bounds of $n$-step TD and TD$(\lambda)$, we provide theoretical insights into the bias-variance trade-off, i.e., efficiency of bootstrapping in RL. This was first posed as an open problem in (Sutton, 1999).

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods