An Investigation of Traffic Density Changes inside Wuhan during the COVID-19 Epidemic with GF-2 Time-Series Images

26 Jun 2020  ·  Chen Wu, Yinong Guo, HaoNan Guo, Jingwen Yuan, Lixiang Ru, Hongruixuan Chen, Bo Du, Liangpei Zhang ·

In order to mitigate the spread of COVID-19, Wuhan was the first city to implement strict lockdown policy in 2020. Even though numerous researches have discussed the travel restriction between cities and provinces, few studies focus on the effect of transportation control inside the city due to the lack of the measurement and available data in Wuhan. Since the public transports have been shut down in the beginning of city lockdown, the change of traffic density is a good indicator to reflect the intracity population flow. Therefore, in this paper, we collected time-series high-resolution remote sensing images with the resolution of 1m acquired before, during and after Wuhan lockdown by GF-2 satellite. Vehicles on the road were extracted and counted for the statistics of traffic density to reflect the changes of human transmissions in the whole period of Wuhan lockdown. Open Street Map was used to obtain observation road surfaces, and a vehicle detection method combing morphology filter and deep learning was utilized to extract vehicles with the accuracy of 62.56%. According to the experimental results, the traffic density of Wuhan dropped with the percentage higher than 80%, and even higher than 90% on main roads during city lockdown; after lockdown lift, the traffic density recovered to the normal rate. Traffic density distributions also show the obvious reduction and increase throughout the whole study area. The significant reduction and recovery of traffic density indicates that the lockdown policy in Wuhan show effectiveness in controlling human transmission inside the city, and the city returned to normal after lockdown lift.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here